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Abstract

We propose a comprehensive metrics validation methodology that has
six validation criteria, each of which supports certain quality
functions. New criteria are defined and illustrated, including
consistency, discriminative power, tracking and repeatability. We show
that non-parametric statistical methods play an important role in
evaluating metrics against the validity criteria. A detailed example
of the application of the methodology is presented.

Keywords: metrics validation methodology, validity criteria, qulity
f,,nctions, non-parametric statistical methods.,/

INTRODUCTION

If the software engineering community believes that the field of
metrics should be engineering and not art, then it should subscribe to
the idea that we evaluate (validate) whether metrics measure what they
purport to measure prior to using the metrics. Furthermore, if metrics
are to be of greatest utility, the validation should be performed in
terms of the quality functions (quality assessment, control and
prediction) that the metrics are to support.

Our purpose is to propose and illustrate a validation methodology
whose adoption, we believe, would provide a rational basis for using
metrics. We believe this to be the most comprehensive metrics
methodology ever proposed. There have been useful validation analyses
performed on specific metrics ur metric systems for the purpose of
satisfying specific research goals. Among these validations are the
following: 1) fvtztion points as a predictor of work hours across
different developnent sites and sets of data [2]; 2) reliability of
metrics data reported by programmers [3]; 3) Halstead operator count
for Pascal programs [7]; 4) metric-based classification trees [181; 5)
evaluation of metrics against syntactic complexity propertiez [191.
Our approach to validation differs in the following ways: 1) The
methodology is general and not specific to particular metrics or
research objectives. 2) It is developed from the point of view of the
metric user (rather than the researcher), who has requirements for
assessing, controlling and predicting quality. To illustrate the
difference in viewpoint, we can make an analogy with the automobile
industry: the manufacturer has an interest in brake lining thickness,
as it relates to stopping distance, but from the driver's perspective,
the only meaningful metric is stopping d.stance! 3) It consists of six
mathematically defined criteria, each or which is keyed to a metrics
function, so the user of metrics can understand how a characteristic
of a metric, as revealed by validation tests, can be applied to
measure software quality. 4) It includes new criteria: consistency,
discriminative power, tracking and repeatability. 5) It recognizes I ---
that a given metric can have multiple uses (e.g., assess, control and
predict quality) and that a given metric can be valid for one use and ------.........
invalid for another use. 6) It includes some useful statistical
methods, rarely seen in the metrics literature, that are applied to
metrics validation: partial linear correlation analysis, chi-square
test for differences in probabilities (contingency tables), "

discriminant analysis and runs test.
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It is not our purpose to be a proponent or an opponent of given
metrics. Whether certain metrics pass or fail our validity tests in
the examples is not the point of this paper. The examples are for the
sole purpose of illustrating the application of the validation
methodology. The validation results could be different in other
applications and environments.

We emphasize the use of non-parametric statistical techniques for
metrics validation because: 1) their application is more consistent
with the nature of metrics data (e.g., non-linearity, non-normality,
large variability) than are parametric techniques and 2) the measures
that result from their application are useful for quality assessment
and control.

Outline of Paper

The following subjects are covered:

o Definitions.
o Rationale of Metrics Validation.
o Quality Functions.
o Non-parametric Statistical Methods for Metrics Validation.
o Purpose of Metrics Validation.
o Validity Criteria.
o Example of Metrics Validation.
o Summary and Future Research.

DEFINITIONS

Critical Value Metric value of a validated metric which is
used to identify software which has
unacceptable quality [11].

Quality Assessment Evaluation of the relative quality of software
components.

Quality Attribute A feature or characteristic that affects an
item's quality [13].

Quality Control A set of activities designed to evaluate the
quality of developed components [modification
of 131.

Quality Factor An attribute of software that contributes to
its quality [11]. A quality factor is also a
metric.

Quality Metric A function whose inputs are software data and
whose output is a single (numerical) value that
can be interpreted as the degree to which
software possesses a given attribute that
affects its quality [13].

Quality Prediction A forecast of component quality.



3

Quality Requirement A requirement that a software attribute be
present in software to satisfy a contract,
standard, specification, or other formally
imposed document [ii].

Software Component General term used to refer to an element of a
software system, such as module, unit, data or
document [11].

Software Quality The degree to which software possesses a
desired combination of attributes [12].

Validated Metric A metric whose values have been statistically
associated with corresponding quality ractor
values [11].

For simplicity of expression, terms will be used without the
qualifying word ('metric' instead of 'quality metric') in the
remainder of the paper except in the case of 'quality factor' which
will be used to distinguish it from 'factor' of the statistical method
'factor analysis'.

RATIONALE FOR METRICS VALIDATION

To help ensure that metrics are used appropriately, cnly validated
metrics (i.e., either quality factors or metrics validated with
respect to quality factors) should be used. Quality factors are valid
by definition. Furthermore, the metrics which are used s'iould be those
which are associated with the quality requirements of the software
project. Both product and process metrics are used to assess software
quality. Our statements about product elements (i.e., components)
apply equally to the processes which produce the products.

It should be understood that if a metric is validated according to
our criteria, there is no guarantee that it will faithfully represent
a quality factor when applied. Validation is a statistical concept. As
such, validation can only be performed within statistical error
limits. The major benefit of validation is that it increases the
probability that the metric will be a good indicator of quality.

QUALITY FUNCTIONS

Metrics are applied in three major quality functions: Quality
Assessment, Quality Control and Quality Prediction. If metrics Lre to
aid in making decisions about software quality, the user of metrics
must understand how this tool supports major quality functions in a
software engineering organization. Since metrics should not be
validated unless the applications of metrics are clearly understood,
it is worthwhile to describe the role of metrics during various
software phases and the need to validate the metrics for specific
metrics functions (i.e., the relationship must be made between
(quality functions and validity criteria). Otherwise, a correlation
coefficient of .9 between metric X and quality factor Y, for example,
is only an abstraction. It only has meaning if validated in the
context of quality functions. These purposes are best served by
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introducing validity criteria on a qualitative basis now; later,
mathematical definitions will be provided in the validation section.

QUALITY ASSESSMENT

Associativity

Software managers need a rational basis for allocating personnel
and computer resources to inspection, testing, and other quality
activities. A method for doing this is to use metrics to provide a
measure of relative quality across components. For example, the
magnitudes of a metric are used to establish priority of testing and
allocation of budget and effort to testing (i.e., the -worst'
component would receive the most attention, largest budget and most
staff). One way to assess relative quality is as follows:

If the elements of a metric vector M, corresponding to components
1,2, ...,n, are ordered by magnitude, as shown below, does this imply
an ordering of component quality?

Magnitude[Ml > M2,...,> Mn] => Monotonically Increasing Quality?
(Decreasing)

The validity criterion which assesses the degree to which this
relationship is satisfied is called associativity. A metric that is
validated according to this criterion is used to compare magnitudes of
a metric obtained from different components to estimate the degree to
which they differ in quality (e.g., 'the quality of Component 2 is
twice that of Component 1).

Consistency

It may be that the software manager is only interested in whether
Component 2 is better than Component 1' rather than how much better.

This approach has the advantage of not requiring a linear relationship
between quality factors and metrics in order to have perfect
association (e.g., if a factor varies as the cube of a metric, there
is still perfect association). Thus, rank is the basis of comparison.
Therefore, a second way to assess relative quality is as follows:

If the elements of a metric vector M, corresponding to components
1,2, ...,n, are ordered by rank, as shown below, does this imply an
ordering of component quality?

Rank[Ml > M2,...,> Mn] => Monotonically Increasing (Decreasing)
Quality?

The validity criterion which assesses the degree to which this
relationship is satisfied is called consistency. A metric that is
validated according to this criterion is used to compare ranks of a
metric obtained from different components to order the quality of a
set of components.
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QUALITY CONTROL

Discriminative Power

Metrics are used to monitor the condition of a component to
determine whether the component appears to be out of tolerance. This
is defined to be a component whose quality is below standard. This
implies that critical values of metrics must be established prior to
the monitoring activity for comparing against the measured values
derived from the component.

In order to control quality during the design phase, components are
identified which appear to have unacceptable quality. Unacceptable
quality may be manifested as excessive complexity, inadequate
documentation, lack of traceability, or other undesirable attributes.
The existence of such conditions is an indication that the software
may not satisfy quality requirements when it becomes operational.
Since many of the quality factors which are usually of interest (e.g.,
reliability), cannot be measured during design, and are only available
during test and operation, validated metrics are used when quality
factors are not available. Validated metric measurements are compared
with the critical values of the metrics. Components whose measurements
are greater than (or less than) the critical valuer. are flagged for
detailed inspection. Depending on the results of 'the inspection,
components are redesigned, scrapped, or not changed. The fact that a
measurement is outside the critical value does not necessarily mean
that the component will exhibit unacceptable quality during operation;
rather, it is a warning that the condition bears investigation. This
concept is illustrated in Figure 1 for metric vector M for components
1,2,...,n. The role of metrics validation for this use of quality
control is to identify a critical value of a metric, where that metric
has been validated against a quality factor on a ivrevious similar
project. Then the metric can serve as a substitute to identify
unacceptable quality during design. Such a metric satisfies the
discriminative power validity criterion.

Mn
M5

M Unacceptable Region

Critical Value of Metric

Acceptable Region
M1 M4

M2 M3

Design Phase (Project Time >)

Figure 1. Application of Metrics to Quality Control (discriminative
power)



Tracking

In addition to component quality lying within acceptable bounds, a
desirable condition is for quality to improve over the life of the
component (i.e., a component should exhibit quality growth). Thus,
during all phases of the life of the component we wish to track
quality in order to control quality. That is, we want to know whether
the software is getting better, worse, or staying the same. Again, in
most phases, the quality factor will not be available but we must know
how quality might be changing, nevertheless. This concept is
illustrated in Figure 2 for metric vector M for a given component i,
measured at times TI, T2,...,Tn. In this illustration, quality
increases from Ti to T2, stays the same from T2 to T3, and decreases
from T3 to Tn, assuming high metric values are 'bad'. Here, the
question for metrics validation is whether a metric can be identified
whose changes over time will track changes in quality. In particular,
if a metric has been validated as tracking a quality factor on a
previous similar project, it would serve as a substitute for tracking
quality on the given project. Such a metric satisfies the tracking
validity criterion.

Mi
Mi

M Mi Mi
Mi Mi

T1 '2 T3 T4 TS Tn

Project Time

Figure 2. Application of Metrics to Quality Control (tracking)

QUALITY PREDICTION

Predictability

During the design phase validated metrics are used to make
predictions of test or operational phase quality factors. Predicted
values of quality factors are compared with target values. Components
whose predicted quality factor values are greater than (or less than)
the target values are flagged for detailed inspection. Potentially,
prediction is more valuable than assessment and control because it
estimates the attribute of ultimate interest -- the quality factor.
However, prediction is more difficult because it invo'.ves using
validated metrics from an early phase (e.g., design) to make
predictions about a different but related attribute (quality factor)
in a much later phase (e.g., operations). This concept is illustrated
in Figure 3 where, at time TI, metric M is used to predict the factor
Fp at time T2, for a given component, and Fa is eventually observed as
the actual value at T2. The challenge to metrics validation is to find
a metric or metrics that can predict a quality factor with acceptable
accuracy. Such a metric satisfies the predictability validity
criterion.
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FaT2

FpT2

F = f(MTiI

Design Operations

TI T2

Figure 3. Application of Metrics to Quality Prediction(predictability)

NON-PARAMETRIC STATISTICAL METHODS FOR METRICS VALIDATION

Among the advantages of non-parametric statistical methods over
parametric methods [5,6,8] which are important for metrics validation,
are the following:

o Assumptions less restrictive than with parametric methods. Given the
noisiness of metrics data, this is a big plus.

o No assumption about distribution (e.g., data does not have to be
normally distributed).

o Can use ordinal scale (i.e., comporent A is higher quality than
component B).

o Can use nominal scale (i.e., A is high quality; B is low quality)

o Do not need interval scale (i.e. difference between A quality and B
quality).

o Do not need ratio scale (i.e., A is 2.5 the quality of B).

For example, ranks of random variables [3] can be used rather than
the values themselves, thus relaxing the assumptions about data
relationships (e.g., linearity) while providing a measure of quality
(e.g., ranking of components) that is useful to the software manager.
In other words the fact that the data is not as -well-behaved' as we
might believe it should be does not necessarily mean that it is less
useful. In fact, when we consider that many useful applications of
metrics can be derived from the ability to classify components as
being 'better' or 'worse', 'high quality' or 'low quality', acceptable
or unacceptable, we realize that the information provided by non-
parametric analysis is supportive of this approach..

Multivariate statistical methods (e.g., correlation analysis,
factor analysis) are also used where appropriate.
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PURPOSE OF METRICS VALIDATION

The purpose of metrics validation is to identify metrics that are
related to quality factors. If metrics are to be useful, they must
indicate accurately whether quality requirements have been achieved or
are likely to be achieved in the future. When it is possible to
measure quality factors at the desired point in the life of the
software, they are used to evaluate software quality. At other points,
certain quality factors (e.g., reliability) are not available; they
are obtained after delivery or late in the project. In these cases,
metrics are used early in a project to assess, control and predict
quality.

It is important that metrics be validated before they are used to
evaluate software quality. Otherwise, metrics may be misapplied (i.e.,
metrics may be used that have little or no relationship to the desired
quality characteristics).

VALIDITY CRITERIA

To be considered valid, a metric must demonstrate a high degree of
association with the quality factor it represents. A metric may be
valid with respect to certain validity criteria and invalid with
respect to other criteria.

The validation procedure requires that threshold values of validity
criteria be selected. These are the values 'V', B', 'A', and 'P'
which are described below. The criterion used for selecting these
values is reasonableness (i.e., judgement must be exercised in
selecting values to strike a balance between the one extreme of
causing a metric which has a high degree of association with a quality
factor to fail validation and the other extreme of allowing a metric
of questionable validity to pass validation).

A short numerical example follows the definition of each validity
criterion.

Note: As previously stated, there are many advantages to using the
general class of non-parametric statistical methods for metrics
validation. However, although the specific methods that are associated
with each validity criterion are appropriate, they are not necessarily
the only methods that could be used.

AssoLiativity: The variation in tie quality factor

explained by the variation in the metric, which is given by

the square of the linear correlation coefficient (R) between
the metric and the corresponding quality factor, must exceed

V ( R2  ,V).

This criterion assesses whether there is a sufficiently strong
linear association between a quality factor and a metric to warrant
using the metric as a substitute for the quality factor, when it is
infeasible to use the latter This criterion supports the quality
assessment function. The mult..variate statistical methods of linear
correlation and partial linear correlation analysis [15] can be used
for this test.
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For example, the correlation coefficient between a complexity
metric and the quality factor reliability may be .9. The square of
this is .81. Thus 81% of the variation in the quality factor is
explained by the variation in the metric. If this relationship is
demonstrated over a representative sample of components, and if V has
been established as .7, one could conclude that the metric has the
ability to associate complexity with reliability and can be used to
compare magnitudes of complexity obtained from different components to
estimate the degree to which they differ in reliability.

Consistency: If a quality factor vector Fl, F2, ... Fn,
corresponding to components 1, 2, ... , n, has the relationship Fl > F2
> .... Fn, the corresponding metric vector must have the relationship
Ml > M2 > ... , Mn.

This criterion assesses whether there is consistency between the
ranks of the quality factor and the ranks of the metric for the same
set of components. Thus this criterion is used to determine whether a
metric can accurately rank, by quality, a set of components. This
criterion supports the quality assessment function. The non-parametric
statistical method Spearman Rank Correlation [3,5,6,8] can be used for
this test.

For example, if the reliability of components A, B and C, as
measured by MTrF, is 1000, 1500 and 800 hours, respectively, and the
corresponding complexity metric values are 5, 3 and 7, where low
metric values are -better' than high values, the ranks for reliability
and metric values, with "i' representing the -highest' rank, are as
follows:

Reliability Complexity
Component Rank Rank

1 1
A 2 2
C 3 3

If this relationship is demonstrated over a representative sample
of components, one could conclude that the metric is consistent and
can be used to rank the quality of components.

Discriminative Power: A metric must be able to discriminate between
high quality components (e.g., high MT'TF) and low quality components
(e.g., low MTTF). For example, the set of metric values associated
with the former should be significantly higher (or lower) than those
associated with the latter.

This criterion assesses whether a metric is capable of separating a
set of high quality components from a set of low quality components.
This capability allows one to establish critical values for metrics
which can be used to identify components which may have unacceptable
quality. This criterion supports the quality control function. The
following non-parametric statistical methods can be used for this
validation test: Mann-Whitney Test [4,5,6,8], chi-square test for
differences in probabilities (contingency tables) [5,8] and the
Krusal-Wallis Test [4,5,6,81. The multivariate statistical method
discriminant analysis [1,151 can also be used.
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For example, if all components with a complexity metric value of
>10 (critical value) have a MTTF of 1000 hours and all components with
a complexity metric value equal to or less than 10 have a MTTF of 2000
hours, and this difference is sufficient to pass the statistical
tests, then the metric separates low from high quality components. If
the ability to discriminate is demonstrated over a representative
sample of software components, one could conclude that the metric can
discrimin tr between low and high reliability components.

Tracking: If a metric M is directly related to a
quality factor F, for a given component, then a change in
a quality factor value from FTI to FT2 , at
times TI and T2, must be accompanied by a change in metric
value from MTI to MT 2 , which is the same
direction (e.g., if F increases, M increases). If M is
inversely related to F, then a change in F must be
accompanied by a change in M in the opposite direction
(e.g., if F increases, M decreases).

This criterion assesses whether a metric is capable of tracking
changes in quality over the life of a component. This criterion
supports the quality control function. The following non-parametric
statistical methods can be used for this validation test: Spearman
Rank Correlation and Wald-Wolfowitz Runs Test (test for randomness)
(5,8].

For example, if a complexity metric is claimed to be a measure of
reliability, then it is reasonable to expect a change in the
reliability of a component to be accompanied by an appropriate change
in metric value (e.g., if the component increases in reliability, the
metric value should also change in a direction that indicates the
component has improved). That is, if MTTF is used to measure
reliability and is equal to 1000 hours during testing(Tl) and 1500
hours during operation (T2), a complexity metric whose value is 8 in
T1 and 6 in T2, where 6 is better' than 8 (i.e., complexity has
decreased), is said to track reliability for this component. If this
relationship is demonstrated over a representative sample of
components, one could conclude that the metric can track reliability
(i.e., indicate changes in component reliability) over the life of the
component.

Predictability: If a metric is used at time TI to
predict a quality factor for a given component, it must
predict a related quality factor F-PT 2  with an

accuracy of:

FaT2 - FpT2

FaT2

where Fa,, is the actual value of F at time T2.
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This criterion assesses whether a metric is capable of predicting a
quality factor value with the required accuracy. It is simply a
relative error calculation [2,6], that takes into consideration the
time of measurement. The multivariate statistical methods of linear
regression, multiple linear regression, and non-linear regression can
be used for this analysis.

For example, if a complexity metric is used during design to
predict the reliability of a component during operation (T2) to be
1200 hours MTTF (Fp T2 ) and the actual MTTF that is measured

during operation is 1000 hours (FaT2 ), then the error in
prediction is 200 hours, or 207. If the acceptable prediction error
(A) is 257, prediction accuracy is acceptable. If the ability to
predict is demonstrated over a representative sample of components,
one could conclude that the metric can be used as a predictor of
reliability. For example, prediction could be used during design to
identify those components that need to be improved.

Repeatability: A metric must demonstrate the above associativity,
consistency, discriminative power, tracking, and predictability
properties for P percent of the applications of the metric.

This criterion is used to ensure that a metric has passed a
validity test over a sufficient number or percentage of applications
so that there will be confidence that the metric can perform its
intended function consistently.

For example, if the required 'success rate' (P) for validating A
complexity metric against the Predictability crit-rion has beer
established as 80%, and there are 100 components, -he metric mus
predict the quality factor with the required accuracy for at least 8C
of the components.

VALIDATION PROCEDURE

Metrics validation includes the following steps:

o Identify the Quality Factors Sample

Draw a random sample from the metrics database.

o Identify the Metrics Sample

Draw a random sample from the same domain (e.g., same software) of
the metrics data base.

o Perform Goodness of Fit Tests

Perform goodness of fit tests on the quality factor and metrics
data to identify their distributions.

o Perform a Statistical Analysis

Perform a statistical analysis using the methods listed under
Validity Criteria.

o Re-validate Metrics
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Metrics validation is a continuous process. It is important to
revalidate a metric each time it is used. As the software engineering
process changes, the validity of metrics changes. A validated metric
may not necessarily be valid in other environments or future
applications. A metric that has been invalidated may be valid in other
environments or future applications.

o Validate and Apply Metrics in Similar Environments

There have been great disparities in results reported in the
literature concerning relationships' between metrics and the
quantities they purport to measure. For example, correlation
coefficients of number of errors with Halstead Effort and McCabe
Complexity differ by a factor of almost two [11]. Differences have
also been reported with respect to specification refinement levels
[10]. These disparities point up the need to apply metrics under
conditions that are similar to those used to validate the metrics.

There should be a project in which metrics data have been collected
and validated prior to application of the metrics. This project should
be similar to the one in which the metrics are applied, with respect
to application, project size, software engineering environment, design
methodology, and programming language. In other words, to the extent
possible, conduct a controlled experiment [6]. Validation and
application of metrics should be performed during the same phases on
different projects. Example: if metric X is collected during the
design phase of project A and the saved values are later validated
with respect to quality factor Y, which is collected during the
operations phase of project A, the metric X should be used during the
design phase of project B to assess quality factor Y with respect to
the operations phase of project B.

EXAMPLE OF VALIDATING METRICS

The following example is provided to show how to make metric
validation tests. No inferences should be drawn from this example
regarding the validity of these metrics for other applications. These
metrics are used for illustrative purposes only. The results of the
validation tests could be different for other applications. The data
used in the validation tests were collected from actual software
projects.

Purpose of Metrics Validation

The purpose of this validation is to determine whether cyclomatic
number (complexity (C)) and size (number of source statements (S))
metrics, either singly or in combination, could be used to assess,
control and predict the quality factor reliability, as represented by
the quality factor error count (E).

Validity Criteria

Select values of V, B, A, and P. The values of V, B, A, and P, used
in the example are .7, .7, 20%, and 80%, respectively.
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VALIDATION PROCEDURE

Perform the following validation steps:

Identify the Quality Factor Sample

Draw a random sample of procedures (i.e., components), which is
summarized in Table 1, from the metrics data base, for the quality
factor reliability, which is represented by the quality factor error
count (Errors). The error counts are listed by project and procedure
in Appendix A.

Identify the Metrics Sample

Using the same procedures (i.e., components) in Table 1, identify
the metrics samples for cyclomatic number (complexity) and size
(statements). The metrics values are listed by project and procedure
in Appendix A.

Table 1

Project Application Procedures Statements Errors
(with errors)

1 String Processing 11 ( 5) 136 10
2 Directed Graph Analysis 31 (12) 430 27
3 Directed Graph Analysis 1 ( 1) 13 1
4 Data Base Management 69 (13) 1021 26

112 (31) 1600 64

Number of procedures: 112 total, 31 with errors, 81 with no errors.
Number of source statements: 2007 total, 1600 included in metrics
analysis.
Language : Pascal on all projects.
Programmer: Single programmer. Same programmer on all projects.

Perform Goodness of Fit Tests

The best fits obtained for the data are the following
distributions:

Errors: Negative Binomial (error procedures)
Complexity: Negative Binomial (all procedures)
Statements: Exponential (all procedures)

Thus, this result discourages the use of statistical methods that
depend on assumptions of normality and encourages the use of non-
parametric methods.

Perform a Statistical Analysis

Perform the tests described under Validity Criteria. Significance

level and sample size are denoted by a and N, respectively; when it

is necessary to specify a critical level of a in hypothesis tests,

.05 is used.
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Associativity

1. Compute the sample linear correlation coefficient (R) for Errors
(E) and Complexity (C) and for Errors (E) and Statements (S) and

compare each R2 with V = .7 1151.

Table 2
Sample Correlations (Error Procedures)

N = 31
Complexity Statements

Errors .7834 .5880
a .0000 .0005

Sample Correlations (All Procedures)
N = 112

Complexity Statements

Errors .8010 .6596
a .0000 .0000

RESULT: R2 < V = .7. Fails minimum R2 tests.

2. Perform a null hypothesis test H.: p 0 for E and C. [151.

RESULT: Reject H,, with a = .0000 and N = 31.

3. Perform a null hypothesis test H,: p >V .36 for E

and C, since we want R2  > V = .7 1151.

RESULT: Accept H,, with a = .01 and N = 31.

4. Compute the partial correlation coefficients for E, C, and S. These
coefficients give the strength of the linear relationship between two
variables while controlling for the effects of the remaining variables
(15]. This is a method for controlling for the effect of size (i.e.,
when the partial correlation coefficient between E and C is computed,
the effect of S is eliminated so that the association between E and C
alone can be observed).

Table 3

Sample Partial Correlations (Error Procedures)
N = 31

Complexity Statements

Errors 0.64298 -0.08157

Complexity 0.65568
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RESULT: From the low R f or E and S, it can be seen that Statements
contributes essentially no additional information about Errors, once
Complexity has been correlated with Errors. Also, the R for E and C
indicates the correlation between Errors and Complexity with the
effect of size (S) eliminated.

5. Compute a confidence interval of p for E and C 1151.

RESULT: .593 < p < .891 with a = .05 and N = 31.

Tests 3, 4 and 5 provide additional useful information about linear
correlation but they are not part of the required valieation
procedure.

6. Perform a Factor Analysis

Note: In this section a factor is defined as follows:

XJ = XljF1+XJ2 +.... +X J~k +U,, where

X i is a variable (metric), FIF2,-... are factors that are
common to all the variables, U, is a random factor unique to XP

and X 3,kx2 ,...,Xk, are factor loadings
(correlations between variables and factors) [9,15].

Do not confuse the use of the statistical term -factor' with the
use of the metrics term 'quality factor'.

The objective of factor analysis is to reduce a set of metrics to a
smaller, orthogonal set of factors that can better explain the
relationships between correlated metrics. It frequently occurs that
several 'independent' variables (Complexity, Statements) that are used
to study the behavior of a dependent variable (Errors) are themselves
dependent and correlated -- the multicollinearity problem (See Table
3). Recent studies [14,171 have shown that a large number of metrics
(16] can be reduced to a small manageable set that represents the
underlying relationship between the quality factor and one or more
metrics. The method is most useful when there are many metrics. The
example that follows only involves three metrics. The mechanics of the
analysis are to attempt to identify one or more factors that contain
high loadings for a subset of the metrics in the factor, including the
quality factor, and low loadings for the remaining metrics. Then the
loadings are examined, excluding the quality factor, to see which
metrics of the candidate factors from the first step have high
loadings. These metrics would be emphasized in certain other analyses,
like regression analysis. The remaining metrics would be deemphasized
or discarded. An example is shown in Table 4, for procedures with
errors, where Factor 2 contains relatively high loadings for 'Errors'
and 'Complexity'. Table 5 shows a relatively high loading for.Complexity'. This analysis indicates that a single metric --
Complexity -- suffices for explaining the variance in the Errors
metric. A similar result was obtained using all procedures.
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Table 4
Factor Loadings (Error Procedures)

N = 31

Metric Factor 1 Factor 2

Errors 0.30128 0.94013

Complexity 0.68442 0.66467

Statements 0.94057 0.29572

Table 5
Factor Loadings (Error Procedures)

N = 31

Metric Factor 1 Factor 2

Complexity 0.44002 0.89799

Statements 0.89799 0.44002

CONCLUSION: The results are mixed. Although the results of tests 2, 3
and 5 are favorable, Complexity failed mandatory Test 1. Thus,
evaluating the results conservatively, Complexity is judged to be
invalid with respect to Associativity. Statements does not perform as
well as Complexity and is invalid with respect to Associativity.
Furthermore the factor analysis indicates that only one of the metrics
-- Complexity -- is needed.

Consistency

I. Compute the Spearman Coefficient of Rank Correlation (r) for E

and C over all procedures with errors. Correlation is lower for E

and S than for E and C and is not shown. Compare r with B = .7 and

a with .05 (5,81.

Table 6
Spearman Rank Correlation (Error Procedures)

N = 31
Complexity Remarks

Errors .5119 r < .7
a .0051 a < .05

RESULT: The desired result is r > .7 and a < .05. Complexity does

not change consistently with changes in Errors across all procedures
with errors. Therefore Complexity is not valid with respect to

Consistency. Aiso, Statements is not valid with respect to
Consistency.
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Discrimitative Power

1. Divide the data into two sets: procedures with errors and
procedures with no errors. Rank these sets according to their C and S
values (statistical programs will do the ranking automatically) and
perform the Mann-Whitney test to see whether C and S can discriminate
between the two sets of procedures (i.e., tell the difference between
high quality and low quality software) (5,8].

RESULT: The results of the Mann-Whitney test for C and S are shown in
Table 7. The average ranks of C and S for procedures with errors are
much higher than the average ranks for procedures with no errors,
respectively. We can infer from the low probabilities of higher
statistics that C and S for procedures with errors have significantly
higher medians in the populations (i.e., that C and S could
discriminate apriori between high quality and low quality software).
Caution: a large number of ties weakens this test. There are a large
number of ties in C but not in S [5,8].

Table 7
Mann-Whitney Test: Comparison of Two Samples

Sample 1: Complexity - Procedures with errors

Sample 2: Complexity - Procedures with no errors

Average rank of first group = 85.9032 based on 31 values.
Average rank of second group = 45.2469 based on 81 values.
Large sample test statistic Z = -6.30181
Two-tailed probability of equaling or exceeding Z = 2.95465E-10
N: 112 total observations.

Sample 1: Statements - Procedures with errors

Sample 2: Statements - Procedures with no errors

Average rank of first group = 85.2419 based on 31 values.
Average rank of second group = 45.5 based on 81 values.
Large sample test statistic Z = -5.82408
Two-tailed probability of equaling or exceeding Z = 5.76106E-9
N: 112 total observations.

2a. Divide the data into four categories, as shown in Table 8,

according to a critical value of C, C., so that a Chi-square test

can be performed to determine whether C, can discriminate between

procedures with errors and those with no errors. C, is chosen to

provide at least five observations for each cell in Table 8 in order

to ensure the validity of the test. This may involve trial and error
f51.
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Table 8

Contingency Table

Complexity Complexity

s3 >3

----------- I-----------I

No Errors 75 6 1 81

------ ----------- I

Errors 10 21 1 31

----------- ----------- I
85 27 112

RESULT: The result of the Chi-square test is shown in Table 9. From

the high value of chi-square and the very small significance level

in the samples, we infer that Cc could discriminate between

procedures with errors (low quality software) and those without

errors (high quality software).

Table 9

Summary Statistics for Contingency Tables: Cc = 3

Chi-square D.F. Significance

44.6081 1 2.40692E-11

Sensitivity Analysis of Critical Value of Complexity

In order to see how good a discriminator Cc is for this

example, we observe the number of misclassifications that result for
various values of Cc: I) Type I ( 'error procedures' classified as
'no error procedures') and 2) Type 2 ('no error procedures'

classified as 'error procedures'). This is shown in Figure 4. As
C. increases, Type I misclassifications increase because an

increasing number of high complexity procedures, many of which have
errors, are classified as having 'no errors'. Conversely, as Cc

decreases, Type 2 misclassifications increase because an increasing
number of low complexity procedures, many of which have no errors,
are classified as having 'errors'. The total of the two curves
represents the 'misclassification' function. It has a minimum at
Cc = 3, which is the value given by the Chi-square test (the

Chi-square test will not always produce the optimum C, but the

value should be close to optimum).
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The foregoing analysis assumes that the costs of Type I and Type
2 misclassifications are equal. This is usually not the case since
the consequences of not finding an error (i.e., concluding that
there is no error when, in fact, there is an error) would be higher
than the other case (i.e., concluding that there is an error when,
in fact, there is no error). In order to account for this situation,
the number of Type I misclassifications, for given values of Cc ,

is multiplied by CI/C2 (Cl/C2 = 1, 2, 3, 4, 5), which is the ratio
of the cost of Type I misclassification to the ronst of Type 2
misclassification. These values are added to the number of Type 2
misclassification to produce the family of five 'cost' curves shown
in Figure 5. Naturally, with the higher cost of Type I
misclassifications taking effect, the optimum Cc (i.e., minimum

costl decreases. However, even at CiC2 = 5, Cc = 3 is a reasonable

choice.

2b. Do Step 2a. for S. The Contingency Table is shown in Table 10.

Table 10

Contingency Table

Statements Statements

K- 13 > 13

------------I-----------

No Errors 64 17 181

----------- I-----------

Errors 7 24 1 31

----------- I-----------I
71 41 112

Table 11

Summary Statistics for Contingency Tables: S, = 13

Chi-square D.F. Significance

30.7658 1 2.91118E-8

RESULT: The same comments made in Step 2a. apply to Sc.
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Sensitivity Analysis of Critical Value of Size

The same type of analysis is performed on Sf as was performed
on C, to see how good S, is as a discriminator of quality. The
curves of Type I, Type 2 and total misclassifications are shown in
Figure 6, where it is seen that the optimum S, = 15, as opposed to
c = 13, as given by the Chi-square analysis. The 'cost' curves are
shown in Figure 7, where again the optimal Sr decreases as Cl/C2
increases. Considering the family of cost curves, S, = 13 is a
reasonable value but SC does not perform as well as C, in this
example, because, wheieas S, = ISis not optimum for any of the
cost curves, Cr = 3 is optimum for three of the five curves. This
result could be anticipated by the higher Chi-square and lower value
of significance (better ability to distinguish between high and low
quality) obtained for C in Table 9 as compared to the corresponding
values obtained for S in Table II.

3. Perform the Krusal-Wallis test (not shown) to ascertain whether C
and S are good discriminators with respect to given values of E (i.e.,
higher ranks of C and S for higher values of E).

RESULT: C and S were good discriminators when both procedures with
errors and all procedures were evaluated.

Discriminant Analysis
Another approach to estimating and using a critical value of a

metric is to use discriminant analysis [1,15]. We briefly describe
this method more to indicate its general potential than as a method
that can be applied in this example because, unfortunately,
discriminant analysis is based on the assumption that the random
variables are normally distributed [1,151. This is not the case for E,
C and S, as was observed from the goodness of fit tests.

In this technique, a linear function of random variables, called
the discriminant function, is found such that, when this function is
evaluated, its value can be used to classify the random variables into
one of N groups. For example, a linear function of C and S:

L - b(C + b S
can be used to classify the tupple (C,S) into the 'error' group or
no error' group depending on whether L ? or < I the cutoff

value of the discriminant function. The coefficients of L are
determined by maximizing ilie r tiu of tile Vdiidlice between the two
groups to the variance within groups, thus providing for maximum
discrimination. Using (F and S , of the 'error' group, a
rutoff value f, is determined for the 'error' group
Similarly, using Cne and So, of the "no error

group, a cutoff value Lne is determined foi the 'no error'
group The two values of L are combined to form a single cutoff
value L. A reasonable way to do this is to weight L, by
the probability of a component being in the 'error' group (i.e., thp
fraction of components in the 'error' group) and to weight
i,, by the probability of a component being in the 'nn
error' group I e., the fraction of components in the no error
g roup I.
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As was the case with factor analysts, it was found that using
both C and S was no better than using C or S alone in the
discriminant function. If a single variable is used, a very
interesting and useful result is obtained. In this case, the
coefficients in L become b = 1; then L = C, L = S. Using this result

in L, produces two cutoff values LC  = Cand L,

S. Thus the mean values of C = 2.53 or 3 (same value as obtained
with Chi-square) and S = 14.29 or 14 (value obtained with Chi-square
= 13) could be used for C, and Ss, respectively. The great
advantage of this approach over the Chi-square technique is that
C, and S, can be used directly, thus obviating the need for
trial and error calculations with Chi-square.

-ONI.USION: C and S are valid with respect to the Disrriminative
Power criterion and either could be used to distinguish between
acceptable (C < 3, S - 13) and unacceptable quality (C > 3, S
> 13) for this and similar applications when this data can be
collected. However, only one is needed (i.e., C is highly correlated
with S and the correlation between E and C/S (normalized) is close
to 0). It should be noted that it is less expensive to collect S
than C.

Tracking

Ideally we want to track a metric against a quality factor over
time for a single component (e.g., procedure). Unfortunately this type
of data is not always readily available because a time history of
corresponding quality factor and metric changes is required. This data
was not available in this example. In lieu of this data, the Spearman
Coefficient of Rank Correlation (r) can be used as a measure of the
ordering of the metric in relation to the quality factor, with project
being the 'component' (see below). Note, however, that (r) does not
have a chronological ordering. Also, while (r = 1) implies perfect
tracking, as defined previously, the converse is not true.

I. Compute the Spearman Coefficient of Rank Correlation (r) for E

and C for Projects I, 2, and 4 separately (Project 3 is not used

because it has only one errorl. Correlation is lower for E and S
than for E and C and is not shown. Compare (r) with B = .7 and a
with .05. Procedures with errors are used rather than all procedures

because the latter has too many ties in the sample. Rank correlation
should not be used when there is a large number of ties. A moderate
number of ties is tolerable 15,8].
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Table 12

Spearman Rank Correlations (Error Procedures)

Project 1, N = 5 (small sample size)

Complexity Remarks

Errors .8250 r > .7

o .0990 a .05

Project 2, N = 12

Errors .6723 r < .7

.0258 a < .05

Project 4, N = 13

Errors .2522 r < .7

a .3824 > .05

RESULT: The desired result is r > .7 and a < .05 (i.e. indication
of on-zero correlation) for each project. Complexity does not track
changes in Errors sufficiently for any of the projects. Therefore,
Complexity is not valid with respect to Tracking. Also, Statements
is not valid with respect to Tracking.

2. Subsequent to calculating (r), we were able to observe
chronologically the procedures which comprise a project, so that for
this example the project was the 'component' and the procedures that
comprise the project were 'tracked'. A runs test was conducted for
Projects 1 and 2 by assigning a 'I' if M changed in the same direction
as F (i.e. tracks) and a '0' if this was not the case (does not
track). The runs test determines whether the binary sequences (runs)
are systematic (i.e., M tracks F) or would be expected by chance.

RESULT: Projects 1 and 2 failed (did not track) the runs test.

Predictability

1. Make a scatter plot of E and C for procedures with errors to obtain
a rough analysis of linearity (15].

RESULT: The dots on Figure 8 show the relationship.
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2. Perform a linear regression analysis of E on C for procedures with
errors.

a. Test whether the assumptions of linear regression analysis hold
for these data. Two of the important assumptions are: (1) E is
normally distributed for given values of C and (2) the variances of E
are equal for given values of C [15].

RESULT: For cases of C = 1 and 2, where there was an adequate sample
size, tests were conducted and it was found that neither assumption
holds. In addition, E was not normally distributed when all 112
procedures were used in the analysis. The best fit for E is a negative
binomial distribution.

b. Examine the residuals of E (difference between observed and
predicted as a function of C [15].

RESULT: Residuals increase with increasing C. This indicates that
prediction error increases with increasing C. This is an undesirable
result since we want prediction error to be independent of C.

c. The same results were obtained in a. and b. when all procedures
were used.

3. Plot the regression model in Figure 8 for E on C for procedures
with errors. The equation is: E = .151 + .404C. The inner band is the
95% confidence interval for average E (i.e., 95% chance that, for a
given C, the est:-ate of average E will fall within the band) and the
outer band is the 95% prediction interval of E (i.e., 95% chance that,
for a given C, the estimate of E will fall within the band) [15]. The
fit is worse for regression of E on S (not shown).

4. Compare Observed Errors with Predicted Errors (obtained from
regression model) and note whether Predictability < A = 207, for P

807 of the predictions.

RESULT: Table 13 indicates that Predictability < 20% /1only 11 out of
31 cases, or 35%; the result is 16% when all procedures are used (not
shown). Fails Predictability and Repeatability tests.
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Table 13

Observed Prediction
Errors Error Project

Predicted Predica-
Errors bility (%)

1 0.957831 0.04217 4.21686 1
5 2.572289 2.42771 48.55421 1
2 2.168674 -0.76868 8.43373 1
1 2.168674 -1.16867 116.86747 1
1 0.957831 0.04217 4.21686 1
1 0.554216 0.44578 44.57831 2
1 0.554216 0.44578 44.57831 2
1 0.S54216 0.44578 44.57831 2
3 0.957831 2.04217 68.07228 2
3 3.379518 -0.37952 12.65060 2
1 1.765060 -0.76506 76.50602 2
3 2.572289 0.42771 14.25702 2
2 0.957831 1.04217 52.10843 2
1 1.765060 -0.76506 76.50602 2
2 2.168674 -0.16868 8.43373 2
1 1.765060 -0.76506 76.50602 2
8 6.608433 1.39157 17.39457 2
1 0.957831 0.04217 4.21686 3
1 2.572289 -1.57229 157.22891 4
1 2.168674 -1.16867 116.86747 4
5 3.379518 1.62048 32.40963 4
2 1.361445 0.63855 31.92771 4
1 1.361445 -0.36145 36.14457 4
1 2.975903 -1.97590 197.59036 4
1 2.168674 -1.16867 116.86747 4
3 1.765060 1.23494 41.16465 4
2 2.168674 -0.16868 8.43373 4
5 5.397590 -0.39759 7.95180 4
1 1.765060 -0.76506 76.50602 4
1 1.765060 -0.76506 76.50602 4
2 1.765060 0.23494 11.74698 4

5. Try non-linear single independent variable regression models.

RESULT: Several non-linear (eg., exponential) regressions of E on C
for procedures with errors had lower correlation and worse fit (not
shown) than the linear model.

6. Perform multiple linear regression analysis, using E as dependent
variable and C and S as 'independent variables'.

a. Test whether the assumptions of the multiple regrz:3sion model hold.
An important assumption of this method is that the 'independent
variables' are actually independent (151.

RESULT: The significant R between C and S of .833 for all procedures
indicates dependence.
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b. Examine the residuals of E for all procedures [15].

RESULT: Residuals increase with increasing C and S indicating that
prediction error would increase with increasing C and S - an
undesirable result.

c. Plot the multiple regression model and compare with results of Step
3 [15].

RESULT: The plots were made but are not shown because the fit is worse
than in Step 3. For procedures with errors the regression equation is:
E = .174 + .437C - .00672S. Statements contributes little to the
relationship. The comparison between simple and multiple regression is
summarized in Table 14, where F-Ratio is a measure of goodness of fit
(generally, high value signifies good fit) and P is the percentage of
predictions that are within the prediction error tolerance (A = 20%).

Table 14

E vs. C E vs. C E vs. C, S E vs. C, S
Error All Error All
Procedures Procedures Procedures Procedures

R .783 .801 .785 .801

F-Ratio 46.1 196.9 22.5 97.6

P for 35% 16% 35% 22%
A < 20%

CONCLUSION: Neither C nor S meets the Predictability criterion, either
singly or in combination, for predicting E. Multiple regression has no
advantage over single variable regression for these data. Also, the
assumptions of both models are not satisfied. Therefore, both C and S
are not valid with respect to Predictability.

Re-validate Metrics

Repeat all validation tests for C and S on future projects, keeping
track of P, the Repeatability requirement (i.e., percentage of
applications a metric must pass validity tests to be certified as
valid).

Validate and Apply Metrics in Similar Environments

The final result of the validation exercise is that C and S are
valid only with respect to the discriminative power criterion to
support the quality control function. To the extent practical, apply C
and S in applications and environments on future projects that are
similar to this one.
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SUMMARY AND FUTURE RESEARCH

We described a comprehensive metrics validation methodology that
has six validation criteria, each of which supports certain quality
functions. New criteria were defined and illustrated, including
consistency, discriminative power, tracking and repeatability. It was
shown that non-parametric statistical methods play an important role
in evaluating whether metrics satisfy the validity criteria. A
detailed example of the application of the methodology was presented.
Although it was not an objective of our research, we found in the
example that a single metric was sufficient to measure quality.

Future research is needed to extend and improve the methodology by
finding answers to the following questions:

o To what extent are metrics that have been validated on one project,
using our criteria, valid measures of quality on future projects --
both similar and different projects?

o Can optimum values of 'V',' B', 'A', and 'P' be determined by
balancing the 'cost' of setting the threshold of validity too high
versus the 'cost' of setting it too low in order to reduce
subjectivity in selecting these values?

o Can optimum critical values of metrics be found for the
discriminative power criterion by using the 'costs' of
misclassification in order to eliminate the calculation of these
values by trial and error?
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APPENDIX A.

C: Complexity, S: Number of Source Statements (excluding comments)
E: Error Count

Procedures with No Errors

C S E Project C S E Project

2 6 0 1 1 3 0 4
1 8 0 1 1 3 0 4
1 11 0 1 1 3 0 4
1 4 0 1 1 5 0 4
3 18 0 1 1 5 0 4
3 15 0 1 1 6 0 4
1 3 0 2 1 9 0 4
1 3 0 2 1 6 0 4
1 3 0 2 1 8 0 4
1 3 0 2 1 9 0 4
1 3 0 2 1 9 0 4
1 3 0 2 2 4 0 4
1 3 0 2 2 7 0 4
1 3 0 2 2 9 0 4
1 5 0 2 4 56 0 4
1 5 0 2 1 24 0 4
1 5 0 2 2 13 0 4
1 13 0 2 2 13 0 4
1 3 0 2 2 10 0 4
1 3 0 2 2 9 0 4
1 3 0 2 2 12 0 4
1 3 0 2 5 21 0 4
1 3 0 2 5 49 0 4
1 3 0 2 3 19 0 4
1 3 0 2 4 20 0 4
1 2 0 4 2 6 0 4
1 2 0 4 2 12 0 4
1 7 0 4 2 9 0 4
1 5 0 4 2 10 0 4
1 7 0 4 1 21 0 4
1 5 0 4 4 21 0 4
1 5 0 4 3 11 0 4
1 5 0 4 2 13 0 4
1 5 0 4 3 14 0 4
1 4 0 4 7 19 0 4
1 3 0 4 2 15 0 4
1 3 0 4 2 10 0 4
1 3 0 4 2 17 0 4
1 3 0 4 3 19 0 4
1 3 0 4 3 15 0 4

2 1.5 0 4
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Procedures with Errors

C S E Project C S E Project

2 14 1 1 4 26 1 2

6 26 5 1 16 94 8 2

5 7 2 1 2 13 1 3

5 21 1 1 6 83 1 4

2 6 1 1 5 28 1 4

1 3 1 2 8 37 5 4

1 11 1 2 3 13 2 4

1 8 1 2 3 16 1 4

2 15 3 2 7 34 1 4

8 45 3 2 5 24 1 4

4 18 1 2 4 18 3 4

6 54 3 2 5 35 2 4

2 34 2 2 13 49 5 4

4 19 1 2 4 19 1 4

.5 30 2 2 4 27 1 4
4 17 2 4
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